7

ARRAYS

The C language provides a capability that enables the user to define a set of
ordered data items known as an array. This chapter describes how arrays can
be defined and manipulated in C. In later chapters, we will include further
discussions on arrays to illustrate how they work with program functions,
structures, character strings, and pointers.
Suppose we had aset of grades that we wished to read into the computer,

and suppose thatwe wished to perform some operations on these grades, such

asrank themin ascending order, compute their average, or find their median.

In Program 6-2, we were able to calculate the average of a set of grades by
simply adding each gradeintoa cumulative total as cach grade was keyed in.
However, if we wanted to rank the grades into ascending order, for example,

then we would haveto do something further. 1f you think about the process of
ranking a setof grades, you will quickly realize that we cannot perform suchan
operation until each and every grade has been entered. Therefore, using the
techniques we have already described, we would read in each grade and store
it into a unique variable, perhaps with a sequence of statements such as:

printf (“Enter grade 1\n")}
scanf ("Zd", garadel)}
printt ("Enter grade 2\n")}
scanf ("Zd", Zgrade2);

Once all of the grades had been entered, we could then proceed to rank them.
This could be done by setting up a serics of if statements to compare each of
the values to determine the smallest grade, the next smallest grade, andso.on,
antil the maximum grade had been determined. If you sit down and try to
write a program 1o perform precisely this task, you will soon realize that for
any reasonably sized list of grades (where reasonably sized is probably only
about 10), the resulting program will be quite large and quite complex. Allisnot
lost, however, as this is one instance when the array comes to the rescue.

In C we can definea variable called grades, which representsnota single
value of a grade butan entire se

t of grades. Each element of the set can thenbe
referenced by means of anumber calledan i 11dex number or subscript. Where,
inmathematics, a subscripted variable x.referstothe ith element xinaset,inC
the equivalent notation is
»Lid

« BO =

So the ex

arad

(read as’
In C, arrd

Qra

actually
think of
first eler]

An
could bg
stateme!

q 4

Thissta
generall
Q

will tak
assign
then th
A
array ¢
9

the va
staten|
q

will h

1
enabl
veryt
a var]

will
thro
finis
the

= Arrays c z . ” 1
. T Z'C‘)-""‘ %u{ M, st
So the expression _ ety ¢ E‘\ ‘M?UQ & and pe

.)\W\U
grades(S)] e

(read as “grades sub 5”) refers to element number 5 in the array called grades.
In C, array elements begin with number 0, so
gradesl0]

¥ actually refers to the first element of the array. (For this reason, it is easier to
think of it as referring to element number zero, rather than as referring to the

5 first element.)
set of Anindividual array element can be used anywhere that a normal variable
e can i could be. For example, we can assign an array value to another variable with a
rther statement such as
tions, a = grades(501;
puter, This statement takes the value contained in grades[50] and assignsittog. More
;_UCh generally, if 1 is declared to be an integer variable, then the statement
jan. ‘
es by a = gradesCil}
ed in. ! . 4 2
mple i will take the value contained in element number i of the grades array and
Rssof) assign it to g. So if i were equal to 7 and the above statement were executed,
P then the value of grades[7] would get assigned to g.
g the ! Avalue can be stored into an element of an array simply by specifying the
Sore array element on the left-hand side of an equals sign. In the statement
S | aradesC1001 = 95;
the value 95 is stored into element number 100 of the grades array. The
statement
qradesli) = g}
them. .
ach of will have the effect of storing the value of g into gradesi].
poon, The ability torepresent a collection of related dataitems by asingle array
oy rto enables us to develop concise and efficient programs. For example, we can
: : : o

pL (])r very easily sequence through the elements in the array by varying the value of
SOy a variable that is used as a subscript into the array. So the for loop
isnot
R for ¢ i =05 i < 100; ++i)
single ;
Shibe suM = sum + gradesCil;
h.crc: will sequence through the first 100 elements of the array grades (clements 0
LinC through 99) and will add the value of each grade into sum. When the for loopis

| finished, the variable sum will then contain the total of the first 100 values of

the grades array (assuming sum were set 1o 0 before the loop was entered).

PROGRAMMING INC =

In addition to integer constants, integer-valued expressions can also be
used inside the brackets to reference a particular element of anarray. Soif low
and high were defined as integer variables, then the statement

next_value = sorted_datal(low + high) 7/ 21}

would assign to the variable next_value the value indexed by evaluating the
expression (low + high) / 2.1f low were equal to 1 and high were equal 10 9,
then the value of sorted_data[5] would be assigned to next_value. And if low
were equal to 1 and high were equal to 10 then the value of sorted_data[5]
would also be referenced, since we know that an integer division of 11 by 2
gives the result of 5.

Just as with variables, arrays must also be declared before they are used.
The declaration of an array involves declaring the type of element that will be
contained in the array—such as int, float, or char—as well as the maximum
number of elements that.will be stored inside the array. (The C system needs
this latterinformation in order to determine how much ofits memory space to
reserve for the particular array.)

As an example, the declaration

int gradesC1003;

declares grades to be an array containing 100 integer elements. Valid
references to this array may be made by using subscripts from 0 through 99.
(But be'careful to make sure that valid subscripts are used, since C does not do
any checking of array bounds for you. So areference to element number 150
of array grades as declared above would not necessarily cause an error but
would most likely cause unwanted, if not unpredictable, program results.)

To declare an array called averages that contained 200 floating point
elements, the declaration

float averagesC2001}

would be used. This declaration would cause enough space inside the
computer’s memory to be reserved to contain 200 floating point numbers.
Similarly, the declaration

int valuesC103:

would reserve enough space foran array called values that could hold up to 10
integer numbers. We could better conceptualize this reserved storage space by
referring to Fig. 7-1.

The elements of arrays declared to be of type int, float, or char may be
manipulated in the same fashion as can ordinary variables: we can assign
values to them, display their values, add to them, subtract from them, and so
on. So if the following statements were to appear in a program

values
values
values
values
values
values
values
values
values
values

Fig

int wvaluesll

values(0]
values(2]
values(S]
values(3]
values(?]
~=valuesi2

<< W | =

“henoeN

then the array valud
these statements wd
The first assigr
into values[0].Inasi
store values of —1
next statement adds
values[5] (which is
following program
divided by 10 and
decrements the co
value from —100 to

values
values
values
values|
values
values
values
values
values
values

Fi

also be

oif low

ting the
hal to 9,
dif low
\data[5]
11 by 2

re used.
t will be
AXimum
m needs
spaceto

5. Valid
bugh 99.
snot do
hber 150
rror but
bsults.)

hg point

bide the
umbers.

lupto 10
space by

r may be
AN assign
n, and so

o _Arrays o 83

values[0]
values[1]
values(2]
values[3]
values[4]
values[S5]
values[é]
values[71]
values(8]
values[9]

Fig. 7-1. The array values inside memory.

int values(C1031;

valuesC0]
values(2] -100;
values(S] 3503

= 1973
=

valuesC3] = valuesi0] + values(S53;
33

valuesC93 values[S] / 103
--values(2

then the array values would contain the numbers as shown in Fig. 7-2 after
these statements were executed.

The first assignment statement has the effect of storing the value of 197
into values[0]. In a similar fashion, the second and third assignment statements
store values of —100 and 350 into values[2] and values[5], respectively. The
next statement adds the contents of values[0] (which is 197) to the contents of
values[5] (which is 350) and stores the result of 547 in values[3]. In the
following program statement, 350—the value contained in values[5]—is
divided by 10 and the result stored into values[9]. The last statement
decrements the contents of values[2], which has the effect of changing its
value from —100 to —101.

values[0] | 197 |
values[1] | |
values[Z] | -101 |
values(3] | S47 |
values[4] | |
values(S] | 350 |
valuesl[4] | |
values(7] | I
values[81] | I
values[?] | 35 |

Fig. 7-2. The array values inside memory.

PROGRAMMING INC =

The above program statements were incorporated into the following
program. The for loop sequences through cach element of the array, displaying
its value at the terminal in turn.

Program 7-1
nain ()
<

int valuesC103;
int index;

valuesC01 = 197}

valuesC2] = =100}

values[S] = 3503

valuesC3] = values(0J + values(S53;
values[91 = values[S] / 103
-=-valuesC21;

for (index = 0} index < 10; ++index)
printf ("values[Zdl = Zd\n", index, valuesfindexl);

Program 7-1 Output

valuesC0] = 197
valuesl1] = 0
valves[2] = —-101
values(3] = 547
valuesC4l = 0
valuesESl = 350
valuesCsl = .0
valuvesl[7] = 0
values(8] = 0
values(9] = 35

The variable index assumes the values 0 through 9, since the last valid
subscript of an array is always one less than the number of elements (due to
that zeroeth element). Since we never assigned values to five of the elementsin
the array—elements 1, 4 and 6 through 8—the values that are displayed for
them are meaningless. Even though the program’s output shows these values
as zero, the value of any uninitialized variable or array element is simply the
value that happens to be sitting around inside the computer’s memory at the
time that the program is executed. For this reason, no assumption should ever
be made as to the value of an uninitialized variable or array element.

It is now time to consider a slightly more practical example. Suppose we
took a telephone survey to discover how people felt about a particular
television show and that we asked each respondent to rate the show on ascale
from 1 to 10, inclusive. After interviewing 5,000 people we accumulated a list of
5,000 numbers. Now we would like to analyze the results. One of the first pieces
of ddta we would like to gather is a table showing the distribution of the ratings.
In other words, we would like to know how many people rated the show a 1,
how many a 2, and so on up to 10.

| each
| cate|
way
appi
pro;

migl
ratin|
€orrg
wher
could
provi
case,

and t
keveq
respd
dealif
progn
of da

1o iso

Progri

A

Progra

o

oo m

